abs(_self) | Takes the absolute value of each element in `self` |
abs_diff_eq(_self, rhs, max_abs_diff) | Returns true if the absolute difference of all elements between `self` and `rhs` is less than or e |
add(_self, rhs) | No Documentation 🚧 |
add_mat3(_self, rhs) | Adds two 3x3 matrices. |
as_dmat3(_self) | No Documentation 🚧 |
clone(_self) | No Documentation 🚧 |
col(_self, index) | Returns the matrix column for the given `index`. # Panics Panics if `index` is greater than 2. |
determinant(_self) | Returns the determinant of `self`. |
div(_self, rhs) | No Documentation 🚧 |
div_scalar(_self, rhs) | Divides a 3x3 matrix by a scalar. |
eq(_self, rhs) | No Documentation 🚧 |
from_angle(angle) | Creates an affine transformation matrix from the given 2D rotation `angle` (in radians). The resu |
from_axis_angle(axis, angle) | Creates a 3D rotation matrix from a normalized rotation `axis` and `angle` (in radians). # Panics |
from_cols(x_axis, y_axis, z_axis) | Creates a 3x3 matrix from three column vectors. |
from_diagonal(diagonal) | Creates a 3x3 matrix with its diagonal set to `diagonal` and all other entries set to 0. |
from_euler(order, a, b, c) | Creates a 3D rotation matrix from the given euler rotation sequence and the angles (in radians). |
from_mat2(m) | Creates an affine transformation matrix from the given 2x2 matrix. The resulting matrix can be use |
from_mat4(m) | Creates a 3x3 matrix from a 4x4 matrix, discarding the 4th row and column. |
from_mat4_minor(m, i, j) | Creates a 3x3 matrix from the minor of the given 4x4 matrix, discarding the `i`th column and `j`th |
from_quat(rotation) | Creates a 3D rotation matrix from the given quaternion. # Panics Will panic if `rotation` is not |
from_rotation_x(angle) | Creates a 3D rotation matrix from `angle` (in radians) around the x axis. |
from_rotation_y(angle) | Creates a 3D rotation matrix from `angle` (in radians) around the y axis. |
from_rotation_z(angle) | Creates a 3D rotation matrix from `angle` (in radians) around the z axis. |
from_scale(scale) | Creates an affine transformation matrix from the given non-uniform 2D `scale`. The resulting matri |
from_scale_angle_translation(scale, angle, translation) | Creates an affine transformation matrix from the given 2D `scale`, rotation `angle` (in radians) a |
from_translation(translation) | Creates an affine transformation matrix from the given 2D `translation`. The resulting matrix can |
inverse(_self) | Returns the inverse of `self`. If the matrix is not invertible the returned matrix will be invalid |
is_finite(_self) | Returns `true` if, and only if, all elements are finite. If any element is either `NaN`, positive |
is_nan(_self) | Returns `true` if any elements are `NaN`. |
mul(_self, rhs) | No Documentation 🚧 |
mul-1(arg0, arg1) | No Documentation 🚧 |
mul-2(arg0, arg1) | No Documentation 🚧 |
mul-3(arg0, arg1) | No Documentation 🚧 |
mul-4(arg0, arg1) | No Documentation 🚧 |
mul_mat3(_self, rhs) | Multiplies two 3x3 matrices. |
mul_scalar(_self, rhs) | Multiplies a 3x3 matrix by a scalar. |
mul_vec3(_self, rhs) | Transforms a 3D vector. |
mul_vec3a(_self, rhs) | Transforms a [`Vec3A`]. |
neg(_self) | No Documentation 🚧 |
row(_self, index) | Returns the matrix row for the given `index`. # Panics Panics if `index` is greater than 2. |
sub(_self, rhs) | No Documentation 🚧 |
sub_mat3(_self, rhs) | Subtracts two 3x3 matrices. |
to_cols_array(_self) | Creates a `[f32; 9]` array storing data in column major order. If you require data in row major order `transpose` the matrix first. |
to_cols_array_2d(_self) | Creates a `[[f32; 3]; 3]` 3D array storing data in column major order. If you require data in row |
to_euler(_self, order) | Extract Euler angles with the given Euler rotation order. Note if the input matrix contains scales |
transform_point2(_self, rhs) | Transforms the given 2D vector as a point. This is the equivalent of multiplying `rhs` as a 3D vec |
transform_vector2(_self, rhs) | Rotates the given 2D vector. This is the equivalent of multiplying `rhs` as a 3D vector where `z` |
transpose(_self) | Returns the transpose of `self`. |